Compressibility of a fermionic mott insulator of ultracold atoms.
نویسندگان
چکیده
We characterize the Mott insulating regime of a repulsively interacting Fermi gas of ultracold atoms in a three-dimensional optical lattice. We use in situ imaging to extract the central density of the gas and to determine its local compressibility. For intermediate to strong interactions, we observe the emergence of a plateau in the density as a function of atom number, and a reduction of the compressibility at a density of one atom per site, indicating the formation of a Mott insulator. Comparisons to state-of-the-art numerical simulations of the Hubbard model over a wide range of interactions reveal that the temperature of the gas is of the order of, or below, the tunneling energy scale. Our results hold great promise for the exploration of many-body phenomena with ultracold atoms, where the local compressibility can be a useful tool to detect signatures of different phases or phase boundaries at specific values of the filling.
منابع مشابه
Local quantum criticality in confined fermions on optical lattices.
Using quantum Monte Carlo simulations, we show that the one-dimensional fermionic Hubbard model in a harmonic potential displays quantum critical behavior at the boundaries of a Mott-insulating region. A local compressibility defined to characterize the Mott-insulating phase has a nontrivial critical exponent. Both the local compressibility and the variance of the local density show universalit...
متن کاملPrecision measurements on a tunable Mott insulator of ultracold atoms.
We perform precision measurements on a Mott-insulator quantum state of ultracold atoms with tunable interactions. We probe the dependence of the superfluid-to-Mott-insulator transition on the interaction strength and explore the limits of the standard Bose-Hubbard model description. By tuning the on-site interaction energies to values comparable to the interband separation, we are able to quant...
متن کاملLocalization of bosonic atoms by fermionic impurities in a three-dimensional optical lattice.
We observe a localized phase of ultracold bosonic quantum gases in a 3-dimensional optical lattice induced by a small contribution of fermionic atoms acting as impurities in a Fermi-Bose quantum gas mixture. In particular, we study the dependence of this transition on the fermionic (40)K impurity concentration by a comparison to the corresponding superfluid to Mott-insulator transition in a pur...
متن کاملQuantum phase transition from a Mott insulator to a superfluid in bosons
Bose Hubbard model is presented and basic natures of Mott insulating phase and superfluid phase are studied in this essay. Also how and when this quantum phase transition occurs is discussed. Experimental supports from ultracold atoms physics are explained, while some miscellaneous topics are touched in the end.
متن کاملThermometry and Refrigeration in a Two-Component Mott Insulator of Ultracold Atoms
Interesting spin Hamiltonians can be realized with ultracold atoms in a two-component Mott insulator (2CMI) [Adv. Phys. 56, 243 (2007); Rev. Mod. Phys. 80, 885 (2008)]. It was recently demonstrated that the application of a magnetic field gradient to the 2CMI enables new techniques of thermometry [Phys. Rev. Lett. 103, 245301 (2009)] and adiabatic cooling [e-print arXiv:1006.4674]. Here we pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 114 7 شماره
صفحات -
تاریخ انتشار 2015